Mynaric funding and G&H ORIONAS project to advance satellite laser communications

March 19, 2019
Two recent news stories point to advances in laser communication modems used for satellite applications.

Two recent news stories point to advances in laser communication modems used for satellite applications. First, Mynaric (Munich, Germany) received post-IPO funding from a satellite constellation builder for its laser communications modems, and second, Gooch & Housego is partnering with several other companies and groups to launch the ORIONAS project that aims to miniaturize communication modems.

Mynaric

Mynaric will receive post-IPO funding of $12.5 million dollars (11 million euro) from the lead investor of a satellite constellation it is working with. In October 2018, Mynaric announced an MoU with the builder of a satellite constellation that is expected to require upwards of 1000 of Mynaric's laser communication terminals, after an initial demonstration mission, and this funding comes from the lead investor of that satellite constellation.

The funds will be used to accelerate serial production and continued development of Mynaric's product portfolio. The company started serial production of optical ground stations in H2 2018 and expects to do the same with its product for airborne applications in H2 2019. Currently, Mynaric says it is the only supplier with a full product portfolio supporting laser communication applications on the ground, in the air, and in space.

The commitment of the investor comes just days after renowned SpaceX veteran Bulent Altan joined Mynaric's management board.

Mynaric is a manufacturer of laser communication technologies used to establish dynamic communication networks in air and space. Its wireless laser data transmission products include ground stations and flight terminals, which allow very large quantities of data to be sent wirelessly over long distances between aircraft, autonomous drones, high altitude platforms, satellites, and the ground at high data rates.

Gooch & Housego

Gooch & Housego (G&H; Ilminster, England) is a partner on the European project ORIONAS (Lasercom-on-chip for next generation, high-speed satellite constellation interconnectivity). The Horizon 2020 initiative with a three-year duration was launched in November 2018 and aims to disrupt the way lasercom modems are designed, built, and qualified in order to enable satellite constellation lasercom links. ORIONAS will squeeze the current lasercom modems using integrated photonic components and new ultracompact fiber-optic modules to enable next generation low SWaP-C (size, weight, power and cost) lasercom terminals.

G&H will design and manufacture compact and efficient fiber amplifier arrays for pre-amplified lasercom receivers, enabling high-speed bidirectional laser links. This will be realized through the development of a compact, rad-hard-by-design fiber pre-amplifier array module, based on its patented intellectual property. The operation of the pre-amplifier module will be validated under ionizing radiation.

G&H is also responsible for the design of the system platform and, following the design and development phase, will perform the system integration of the complete laser transceiver through functional integration of the components developed within the project. Successful delivery of the project will mean using this expertise to meet the demanding system price target required in satellite constellation applications.

SOURCES: Mynaric; https://mynaric.com/news/mynaric-raises-eur-11m-in-post-ipo-financing-from-satellite-constellation-lead-investor-at-eur-55-per-share/ and Gooch & Housego; https://goochandhousego.com/gh-partners-on-new-european-project-on-miniature-lasercom-transceivers/

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!