Cheaper materials are key to lower-cost solar cells

July 1, 2009
A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

Although less costly than silicon and easier to produce, thin-film technologies would rapidly deplete natural resources if scaled to the terawatt-levels of annual manufacturing production required, due to their low conversion efficiencies. Interested in finding alternatives, the Berkeley study looked at 23 semiconducting materials and found nine that are significantly lower in cost than crystalline silicon, including iron pyrite, copper sulfide, and copper oxide. Iron pyrite (FeS2) was found to be several orders of magnitude better than any alternative when considering cost and abundance. Despite a power-conversion efficiency of only 4% (compared to around 19% for crystalline silicon), iron pyrite’s ultralow material cost—$0.03/kg versus $1.70/kg for silicon—would more than offset efficiency losses in a large-scale solar-cell production scenario. Contact Daniel Kammen at [email protected] or http://rael.berkeley.edu.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!