Cheaper materials are key to lower-cost solar cells

July 1, 2009
A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

Although less costly than silicon and easier to produce, thin-film technologies would rapidly deplete natural resources if scaled to the terawatt-levels of annual manufacturing production required, due to their low conversion efficiencies. Interested in finding alternatives, the Berkeley study looked at 23 semiconducting materials and found nine that are significantly lower in cost than crystalline silicon, including iron pyrite, copper sulfide, and copper oxide. Iron pyrite (FeS2) was found to be several orders of magnitude better than any alternative when considering cost and abundance. Despite a power-conversion efficiency of only 4% (compared to around 19% for crystalline silicon), iron pyrite’s ultralow material cost—$0.03/kg versus $1.70/kg for silicon—would more than offset efficiency losses in a large-scale solar-cell production scenario. Contact Daniel Kammen at [email protected] or http://rael.berkeley.edu.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!