• Quantum dots lase in levitated microdrop

    By levitating a spherical liquid microdrop doped with quantum dots in an electrodynamical trap and accessing the droplet’s surface-resonant modes, researchers at the Max-Planck Research Group and University Erlangen-Nuremberg (Erlangen, Germany) have managed to make a quantum-dot microdrop laser.
    June 1, 2008

    By levitating a spherical liquid microdrop doped with quantum dots in an electrodynamical trap and accessing the droplet’s surface-resonant modes, researchers at the Max-Planck Research Group and University Erlangen-Nuremberg (Erlangen, Germany) have managed to make a quantum-dot microdrop laser. A 400× power enhancement is observed in the surface-lasing modes as compared to the photoluminescence emission spectrum for the combined quantum-dot particles at the same wavelength.

    Click here to enlarge image

    The 9- to 40-μm-diameter microdrops—composed of water, 30%-by-volume glycerin to prevent evaporation, and a low concentration (1.3 to 2.6 μmoles) of cadmium selenide/zinc sulfide) core/shell quantum dots—are levitated in an electrodynamic endcap trap and pumped with a pulsed Nd:YAG laser (10 ns pulses, 10 Hz repetition rate). Single-mode lasing at 640 nm is observed in droplets less than 10 μm in diameter, while multimode lasing occurs in larger droplets. Incredibly, calculations based on a uniform distribution of quantum dots indicate that to achieve the nanowatt-level lasing signals observed, each quantum dot in the microdrop must contribute approximately 500 photons during a 10 ns pump pulse. The Erlangen team is now working toward understanding the lasing mechanism in more detail. Contact Jessica Mondia at [email protected].

    Sign up for Laser Focus World Newsletters
    Get the latest news and updates.

    Voice Your Opinion!

    To join the conversation, and become an exclusive member of Laser Focus World, create an account today!