Whispering-gallery resonator generates CW fourth-harmonic UV light

Nov. 30, 2011
Ann Arbor, MI--When only 200 mW of IR light is coupled into a millimeter-scale whispering gallery resonator made of lithium niobate, it can produce cascaded-harmonic generation up to the fourth harmonic, serving as a compact, low-power source of UV light.

Ann Arbor, MI--When only 200 mW of IR light is coupled into a millimeter-scale whispering gallery resonator made of lithium niobate, it can produce cascaded-harmonic generation up to the fourth harmonic, serving as a compact, low-power source of UV light.1 The device, developed by researchers at the University of Michigan, could become part of future microscopes, information-storage systems, and chemical-analysis instruments.

The research was led by Mona Jarrahi and Tal Carmon, assistant professors in the Department of Electrical Engineering and Computer Science. The experiment was performed by Jeremy Moore and Matthew Tomes, both graduate students in the same department.

The resonator takes its IR input from relatively cheap telecommunications-compatible lasers. "We optimized the structure to achieve high gain over a broad range of optical wavelengths," says Jarrahi. "This allows us to make low-cost, wavelength-tunable ultraviolet sources using low IR power levels."

Lasers get progressively more difficult to generate and more inefficient, as engineers aim for shorter wavelengths, say the researchers. "As we go from green to blue, the efficiency of the laser goes down. Going to UV lasers is even harder," notes Jarrahi. "This principle was first suggested by Einstein and is the reason why green laser pointers do not actually contain a green laser. It is actually a red laser and its wavelength is divided by two to become green light."

The nonlinear-crystal resonator has variable poling and a resonator quality (Q) factor of 107.

REFERENCE:

1. Jeremy Moore et al., Optics Express, Vol. 19, No. 24, p. 24139 (2011).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!