Distributed-feedback laser array provides selectable WDM wavelengths

Jan. 24, 2000
Researchers at Fujitsu Laboratories and Fujitsu Quantum Devices (both Atsugi, Japan) have designed and fabricated a wavelength-selectable laser by monolithic integration of eight distributed-feedback (DFB) lasers into a quarter-wavelength-shifted, eight-channel DFB array.

Researchers at Fujitsu Laboratories and Fujitsu Quantum Devices (both Atsugi, Japan) have designed and fabricated a wavelength-selectable laser by monolithic integration of eight distributed-feedback (DFB) lasers into a quarter-wavelength-shifted, eight-channel DFB array. The 0.6-mm-wide, 2-mm-long device demonstrated performance characteristics comparable to those of discrete DFB lasers. Fiber-coupled output power climbed to +10 dBm with good uniformity, narrow linewidth, and a side-mode suppression ratio of up to 50 dB. Emission wavelengths for the array started at 1535 nm and increased by 3.18 nm for each successive DFB laser, with a standard deviation for wavelength spacing of 0.12 nm. The mean threshold current was 7.9 mA, with a 0.3-mA standard deviation.

The DFB laser array was integrated with a compact, low-loss multimode-interference combiner circuit and a semiconductor optical amplifier. The entire device was fabricated in a high-index-contrast buried-waveguide structure to minimize the insertion loss and length of the optical combiner. The high-index contrast also allowed compact fabrication of the bent waveguides that coupled the DFB laser array to the combiner. The waveguide was fashioned out of a 200-nm-thick gallium indium arsenide phosphide layer with a 1.3-µm bandgap. Contact Martin Bouda at [email protected]. — Paula M. Noaker

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!