Zinc selenide-based LED shows long life

Aug. 28, 2000
When made into light-emitting diodes (LEDs), wide-gap II-VI semiconductors such as zinc selenide (ZnSe) emit light in the blue-green part of the spectrum. If it weren't for their short lifetimes, such devices could be competition for gallium nitride-based LEDs. Adding tellurium to the p layers of a ZnSe LED stabilizes the nitrogen receptor, lengthening lifetimes; also important is proper lattice spacings in the various layers of the device ...

When made into light-emitting diodes (LEDs), wide-gap II-VI semiconductors such as zinc selenide (ZnSe) emit light in the blue-green part of the spectrum. If it weren't for their short lifetimes, such devices could be competition for gallium nitride-based LEDs. Adding tellurium to the p layers of a ZnSe LED stabilizes the nitrogen receptor, lengthening lifetimes; also important is proper lattice spacings in the various layers of the device, leading to a tensile strain of the quantum well. Researchers at the Universität Würzburg (Würzburg, Germany) have satisfied both these needs by building an LED that includes a layer of zinc magnesium selenide telluride, a zinc cadmium selenide quantum well, and an indium phosphide substrate. In contrast to conventional II-VI diodes made on a gallium arsenide substrate with a similar density of extended defects, the new LED shows no formation of dark-line defects, resulting in a lifetime increased by three orders of magnitude. Although the first such LED died catastrophically after 150 h when a contact failed, a reduction of the current density should increase device lifetime. Lifetime estimates for the first fabricated structure (which has only moderate quality) are at least several thousand hours. Contact Wolfgang Faschinger at [email protected].

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!