Ultrafast-laser writing in quartz produces data storage that lasts billions of years

Feb. 26, 2016
The birefringent data should last for 13.8 billion years at 190°C.

Using nanostructured glass, scientists from the University of Southampton’s Optoelectronics Research Centre (ORC; Southampton, England) have developed a recording and retrieval process based on femtosecond laser writing in transparent materials, creating birefringent regions that could preserve digital data for billions of years. They call it five-dimensional (5D) digital data, with the three spatial dimensions plus the birefringence’s slow-axis orientation (4th dimension) and the strength of retardance (5th dimension).

The storage allows properties including 360 TB/disc data capacity, thermal stability up to 1,000°C, and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C). As a very stable and safe form of portable memory, the technology could be useful for organizations with big archives, such as national archives, museums, and libraries.

The technology was first experimentally demonstrated in 2013 when a 300 kb digital copy of a text file was successfully recorded in 5D. Now, major documents from human history such as the Universal Declaration of Human Rights (UDHR), Newton’s Opticks, the Magna Carta, and the King James Bible, have been saved as digital copies that could easily survive the human race. A copy of the UDHR encoded to 5D data storage was recently presented to UNESCO by the ORC at the International Year of Light (IYL) closing ceremony in Mexico.

The data is written in three layers of nanostructured dots separated by five μm. The self-assembled nanostructures change the way light travels through glass, modifying polarization of light that can then be read by a combination of an optical microscope and a polarizer.

"This technology can secure the last evidence of our civilization: all we’ve learnt will not be forgotten," says the ORC’s Peter Kazansky.

The researchers presented their research on Wednesday, 17 February 2016 at SPIE Photonics West (San Francisco, CA). The invited paper was called "5D Data Storage by Ultrafast Laser Writing in Glass." The researchers are now looking for industry partners to further develop and commercialize the technology.




About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!