Graphene becomes incandescent light source for use in integrated photonic circuits

June 15, 2015
Electrically heated graphene does not heat up its substrate very much.

A team of scientists and engineers from Columbia University (New York, NY), Seoul National University (SNU; Seoul, South Korea), Korea Research Institute of Standards and Science (KRISS; Daejeon, South Korea) and the University of Texas at Austin have created an incandescent light source using graphene.1

A graphene strip spanning two conducting contacts placed on a silicon chip reaches temperatures of above 2500 °C, but its spectral output is not strictly a blackbody spectrum.

Spectral output of the heated graphene showed peaks at specific wavelengths, which the team discovered was due to interference between the light emitted directly from the graphene and light reflecting off the silicon substrate and passing back through the graphene. "This is only possible because graphene is transparent, unlike any conventional filament, and allows us to tune the emission spectrum by changing the distance to the substrate," notes Young Duck Kim, a Columbia University researcher.

As temperature goes up, conductivity goes down

The ability of graphene to achieve such high temperatures without melting the substrate or the metal electrodes results from the fact that, as it heats up, graphene becomes a much poorer conductor of heat; as a result, the high temperatures stay confined to a small "hot spot" in the center.

Light from the microscopic source is visible to the naked eye with no magnification.

The new type of light source could provide light within integrated photonic circuits and could possibly become a component of thin, flexible, transparent displays.

The team demonstrated the scalability of their technique by constructing large-scale arrays of chemical-vapor-deposited graphene light emitters.

The group is currently working to further characterize the performance of these devices -- for example, how fast they can be turned on and off -- and to develop techniques for integrating them into flexible substrates.



1. Young Duck Kim et al., Nature Nanotechnology (2015);

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!