Ultrathin organic DFB membrane lasers enable bendable security tags

July 1, 2018
Newly created membrane lasers of nominal 200 nm thickness can easily lase when illuminated with another laser source.

To date, most organic semiconductor lasers still require rigid substrates and are relatively thick (>100 µm). But researchers at the University of St. Andrews (Fife, Scotland) have created all-solution-processed polymer distributed-feedback (DFB) membrane lasers of nominal 200 nm thickness that easily lase when illuminated with another laser source, producing well-defined wavelengths that can be tuned via the deposition recipe.

Beginning with a rigid glass substrate, solution-based deposition of a sacrificial water-soluble polymer layer is followed by an ultraviolet (UV)-cured imprint resist that defines the DFB resonator and an organic semiconductor polymer gain material. This laser structure then lifts off in a water-bath immersion process, producing a flexible polymer membrane laser with improved light confinement because of replacing the typical glass substrate with air. For one laser, illumination with a 450 nm laser with 5 ns pulse duration produced membrane lasing at 540 nm and 133 pm linewidth full-width half-maximum (FWHM) with a beam divergence of around 2.6°. The laser output was intense enough to be clearly visible by the naked eye on a screen a meter away. The flexible membrane lasers were applied to bank notes and bovine eyes (simulating the human eye) and studied for several months. They exhibited sufficient stability (without encapsulation) for use as rugged, flexible security codes. Reference: M. Karl et al., Nat. Commun., 9, 1525 (2018).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!