Gallium nitride LEDs fabricated on silicon substrates boost luminous intensity

Jan. 1, 2007
At the 2006 IEEE International Electron Devices Meeting (San Francisco, CA) last December, researchers from Matsushita Electric (Osaka, Japan) and the Nagoya Institute of Technology (Nagoya, Japan) described highly efficient gallium nitride (GaN)-based light-emitting diodes (LEDs) fabricated on silicon (Si) substrates.

At the 2006 IEEE International Electron Devices Meeting (San Francisco, CA) last December, researchers from Matsushita Electric (Osaka, Japan) and the Nagoya Institute of Technology (Nagoya, Japan) described highly efficient gallium nitride (GaN)-based light-emitting diodes (LEDs) fabricated on silicon (Si) substrates. In the first half of a flip-chip growth process, the researchers formed a 2-D photonic-crystal pattern on a seed Si substrate prior to epitaxial growth of an aluminum nitride (AlN) and GaN/AlN multilayer buffer, followed by InGaN multiple-quantum-well (MQW) active layers and a reflective p-type electrode on the surface. The device was then flipped over and bonded onto a thermally conductive Si substrate. The seed Si substrate was removed, leaving a replication of the photonic-crystal pattern in the multilayer buffer.

The resulting LED achieved a 70% improvement in luminous intensity over LEDs grown without the patterning process due to the replicated photonic crystal. Moreover, the growth on patterning led to periodic reductions in dislocation density between the multilayer buffer and MQW layers along the sidewalls of the photonic-crystal pattern. The ability to use relatively inexpensive Si substrates is expected to cut manufacturing costs of GaN-based LEDs. Contact Kenji Orita at [email protected].

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!