Crystal stores light pulses and routes them all-optically

Jan. 1, 2009
Researchers at Jilin University (Changchun, China) and the Chinese Ministry of Education (Beijing, China) are not only using electromagnetically induced transparency (EIT) to drastically slow a signal light pulse within a crystal to store it; they are speeding it up again using a phenomenon that optically splits the pulse into two pulses, each propagating in a different, adjustable direction.

Researchers at Jilin University (Changchun, China) and the Chinese Ministry of Education (Beijing, China) are not only using electromagnetically induced transparency (EIT) to drastically slow a signal light pulse within a crystal to store it; they are speeding it up again using a phenomenon that optically splits the pulse into two pulses, each propagating in a different, adjustable direction. The phenomenon could have practical application in all-optical or quantum-information networks. In addition, the crystalline host is easier to work with than the atomic gases often used for EIT.

A signal pulse from a dye laser emitting at 606 nm enters the crystal, which is 0.05% praseodymium-doped yttrium orthosilicate held at 3.5 K. Another pulse, slightly wavelength-shifted, slows the signal pulse. After a storage time of 10 µs, two trigger pulses coming from other directions get the signal pulse back up to speed, but the phase matching between the pulses also creates two signal pulses from one. Changing the intensity of the trigger pulses changes the output-signal pulse directions; such manipulation can potentially allow information to be controllably distributed between different light channels. Contact Hai-Hua Wang at [email protected].

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!