Bridging the green gap

Oct. 1, 2009
The announcements earlier this year by Sumitomo (Kyushu, Japan) and Osram Opto Semiconductors (Regensburg, Germany) that they each have developed green-emitting laser diodes (at 531 and 515 nm respectively) raises the specter of a “true green” semiconductor laser light source competing in the laser marketplace very soon.

The announcements earlier this year by Sumitomo (Kyushu, Japan) and Osram Opto Semiconductors (Regensburg, Germany) that they each have developed green-emitting laser diodes (at 531 and 515 nm respectively) raises the specter of a “true green” semiconductor laser light source competing in the laser marketplace very soon. Small second-harmonic-generation-based external-cavity green lasers are readily available and widely applied, but the advantages of direct-emitting laser diodes make them better candidates for some applications, especially displays. Blue- and red-emitting laser diodes already exist; a green counterpart would make red-green-blue (RGB) displays less complex and easier to build. Interest is high: besides Sumitomo and Osram other groups working on bridging the green gap include Rohm (Kyoto, Japan) and Nichia (Tokyo, Japan), as well as researchers at Rensselaer Polytechnic Institute (Troy, NY) among others.

Meanwhile, another green laser technology, the optically pumped semiconductor laser (OPSL), continues to make inroads into new markets, most recently attracting the interest of ultrafast researchers for pumping Ti:sapphire systems. Part of its appeal is based on low-noise delivery of 5 W output at 532 nm. The advent of green laser diodes and new versions of the OPSL underscores the broader technology development centered on commercial green-emitting sources. Other green lasers include the fiber laser, the disk laser, and diode-pumped solid-state systems. With so many choices the market should be interesting to watch over the next couple of years. With this in mind, the 2010 Lasers & Photonics Marketplace Seminar will feature a “Technology Forum” focused on green-emitting laser technologies, their markets, and applications. The seminar is held in conjunction with Photonics West next January in San Francisco, CA. Find out more at www.marketplaceseminar.com.

Silicon technology revolutionized electronics so a significant body of research is now aimed at applying the lessons learned to photonics. Engineers at Intel (Santa Clara, CA) have “reinvented” avalanche photodetectors, producing monolithically grown CMOS-compatible devices with world-record gain-bandwidth product that can be used at common optical communications wavelengths.

About the Author

Stephen G. Anderson | Director, Industry Development - SPIE

 Stephen Anderson is a photonics industry expert with an international background and has been actively involved with lasers and photonics for more than 30 years. As Director, Industry Development at SPIE – The international society for optics and photonics – he is responsible for tracking the photonics industry markets and technology to help define long-term strategy, while also facilitating development of SPIE’s industry activities. Before joining SPIE, Anderson was Associate Publisher and Editor in Chief of Laser Focus World and chaired the Lasers & Photonics Marketplace Seminar. Anderson also co-founded the BioOptics World brand. Anderson holds a chemistry degree from the University of York and an Executive MBA from Golden Gate University.    

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!