Aluminum-free-active-region diode laser achieves 8.8-W CW record at 805 nm

May 1, 1997
By combining a large optical cavity and an aluminum-free active region, researchers at the University of Wisconsin-Madison (Madison, WI) produced a record-high continuous-wave (CW) output of 8.8 W at 805 nm from a single 100-µm-aperture diode laser. But rather than develo¥a completely aluminum-free structure, the researchers surrounded a 0.015-µm-wide indium gallium arsenide phosphide (InGaAsP) quantum well and an indium gallium phosphide (InGaP) waveguide layer with high-energy-band

Aluminum-free-active-region diode laser achieves 8.8-W CW record at 805 nm

By combining a large optical cavity and an aluminum-free active region, researchers at the University of Wisconsin-Madison (Madison, WI) produced a record-high continuous-wave (CW) output of 8.8 W at 805 nm from a single 100-µm-aperture diode laser. But rather than develo¥a completely aluminum-free structure, the researchers surrounded a 0.015-µm-wide indium gallium arsenide phosphide (InGaAsP) quantum well and an indium gallium phosphide (InGaP) waveguide layer with high-energy-bandga¥indium gallium aluminum phosphide (InGaAlP) cladding layers--providing a dramatic reduction in carrier leakage with consequent improved high-power CW performance.

The InGa¥waveguide was 1 µm thick, while the diode was 1.25 mm long, with 4%/95% facet-coating reflectivities and a 100-µm-wide stripe. Dan Botez, director of the Reed Center at the university, says that the power density of 18 MW/cm2 is more than twice that achievable with AlGaAs devices at 805 nm and virtually the same as for InGaAs active devices at 980 nm. He expects that 805-nm aluminum-free active region structures could be readily made to produce 10 W CW. Such devices pave the way for reliable 60-W CW laser bars, three times more power than can be obtained from AlGaAs laser bars at 805 nm.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!