Plasmonic photomixer offers high power terahertz radiation at room temperature

Nov. 4, 2014
A team of researchers has used plasmonic photomixing to develop a room-temperature terahertz source with not only high spectral purity and broad tunability, but with nearly 1 mW of optical power at terahertz frequencies.

Researchers at the U. of California, Los Angeles (UCLA) have used plasmonic photomixing to develop a room-temperature terahertz source with not only high spectral purity and broad tunability, but with nearly 1 mW of optical power at terahertz frequencies—significantly higher than previously demonstrated photomixing-based terahertz radiation sources.

The 1550 nm plasmonic photomixer operates under pumping duty cycles below 10%. By enhancing the device’s quantum efficiency through the use of plasmonic contact electrodes and by reducing thermal breakdown at high optical pump power levels using a 150 mW low-duty-cycle (2%) optical pump with a 1 MHz modulation frequency, 0.8 mW continuous-wave radiation at 1 THz has been demonstrated. The plasmonic photomixer is fabricated with a logarithmic spiral antenna integrated with plasmonic contact electrodes on an erbium arsenide: indium gallium arsenide (ErAs:InGaAs) substrate. The fine comb geometry of the plasmonic nanostructures better concentrates the laser light and enhances the generated photocarriers in close proximity to the contact electrodes, reducing transport path length of the photocarriers and increasing both output efficiency and power for the source. The pump’s repetition rate can also be specifically selected for a given duty cycle to control the terahertz radiation spectral linewidth. Reference: Chrisopher W. Berry et al. Opt. Lett. (2014); http://dx.doi.org/10.1364/OL.39.004522.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!