OLED-style emitter has single-photon 'pixels'

March 6, 2012
Unlike the broadband, diffuse emission from organic light-emitting diode (OLED) displays, a new type of emitter made using standard OLED manufacturing processes and materials releases only distributed single photons upon electrical excitation of the active layer.

Unlike the broadband, diffuse emission from organic light-emitting diode (OLED) displays, a new type of emitter made using standard OLED manufacturing processes and materials releases only distributed single photons upon electrical excitation of the active layer.1 Designed by researchers at the University of Stuttgart (Stuttgart, Germany), the University of Ulm (Ulm, Germany), and the University of Würzburg and ZAE Bayern (both in Würzburg, Germany), the single-photon emitter also operates at room temperature (unlike semiconductor quantum dots), offering numerous opportunities for applications in secure communications and cryptography.

Because fluorescent molecules embedded in polymer or photonic-crystal matrices have inefficient electroluminescent properties, the researchers chose an iridium (Ir)-based organometallic complex—specifically, Ir(piq)3 (tris(1-phenylisoquinoline)iridium) molecules—that emits single photons at 613 nm with almost 100% internal quantum efficiency via phosphorescence in a polymer matrix.

The emission is successful based on two key fabrication steps: First, the red-light-emitting molecules are dispersed evenly in a blue-light-emitting host polymer; and second, a low-work-function barium metal is used as the cathode to ensure adequate charge-carrier densities suitable for electron injection and, hence, electrically driven single-photon emission at room temperature. Photon-correlation measurements confirm single-photon emission from the distributed Ir-based molecules with lifetime values ranging from 1.0 to 1.4 μs using a 12 V input. Contact Maximilian Nothaft at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Advanced Laser Processing Techniques for Surgical Robot End Effector Manufacturing

Oct. 23, 2024
For the cutting-edge manufacturers of minimally invasive surgical robots, precision laser processing is the cornerstone for crafting optimal end effectors. Learn about advancements...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!