Modified commercial violet laser diode produces superradiant emission

April 3, 2012
A light source that operates via so-called Dicke superradiance has been created by scientists at the University of Cambridge and the PN Lebedev Physical Institute; the two-section gallium nitride (GaN)-based laser diode produces 1.4 ps optical pulses at a 10 MHz repetition rate and a 408 nm wavelength.

A light source that operates via so-called Dicke superradiance has been created by scientists at the University of Cambridge (Cambridge, England) and the PN Lebedev Physical Institute (Moscow, Russia); the two-section gallium nitride (GaN)-based laser diode produces 1.4 ps optical pulses at a 10 MHz repetition rate and a 408 nm wavelength. Superradiance is an alternative to Q-switching or modelocking for producing ultrafast pulses. Previously achieved only in near-IR laser diodes emitting between 800 and 1580 nm, superradiance requires a very high density of electrons and holes, as well as the presence of a resonant electromagnetic field to help in pairing the electrons and holes.

The researchers started with a commercially available, single-transverse-mode violet laser diode from Sharp Corp. (Osaka, Japan); after uncapping the laser, they used focused-ion-beam etching to modify the p-contact metallization, creating a two-section device with an absorber section and a gain section. The gain section was driven at room temperature with electrical pulses that were several nanoseconds long. At a reverse bias of -3.7 V, superradiance occurred, producing peak optical powers greater than 2.5 W and pulse lengths almost four orders of magnitude shorter than the electrical pulse length. Compared to the emission spectrum of the device operated at a lower reverse bias that produced gain-switched pulses (black), the superradiant pulses (red) showed a red shift of 2.7 nm. Contact Ian White at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!