Bulk lithium tantalate doubles diode laser output to ultraviolet wavelengths

April 1, 1996
Using periodically poled bulk lithium tantalate (LiTaO3) for second-order quasi-phasematching second-harmonic generation (SHG), researchers Kiminori Mizuuchi and Kazuhisa Yamamoto of Matsushita Electric Industrial Co. Ltd. (Osaka, Japan) frequency doubled the output of a visible (680 nm) diode laser, obtaining 1.02 µW of power at 340 nm. Lithium tantalate is a good material for ultraviolet light generation, with transparency extending to 280 nm, large nonlinear susceptibility, and high resis

Bulk lithium tantalate doubles diode laser output to ultraviolet wavelengths

Using periodically poled bulk lithium tantalate (LiTaO3) for second-order quasi-phasematching second-harmonic generation (SHG), researchers Kiminori Mizuuchi and Kazuhisa Yamamoto of Matsushita Electric Industrial Co. Ltd. (Osaka, Japan) frequency doubled the output of a visible (680 nm) diode laser, obtaining 1.02 µW of power at 340 nm. Lithium tantalate is a good material for ultraviolet light generation, with transparency extending to 280 nm, large nonlinear susceptibility, and high resistance to photorefractive damage. The Matsushita team created the periodic ferroelectric domain inversions in the LiTaO3 that are required for quasi-phasematching second-harmonic generation by photolithographically generating a periodic tantalum electrode pattern on the surface of the crystal, subjecting the sample to proton exchange, and applying a brief, high-voltage pulse. The poling period was 3.3 µm with a linewidth of 1.2 µm and a 75% duty cycle.

The completed device was 200 µm thick with a 10-mm interaction length. The non optimized beam waist in the crystal was 40 ¥ 100 µm; the short axis was aligned to the 200-µm thickness of the LiTaO3. Second-harmonic conversion efficiency of 0.09% was achieved, which is an order of magnitude lower than the theoretical value, primarily due to the nonoptimized beam waist. Efficiency should increase with the use of an improved source.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!