LASER COOLING: Laser-cooled mercury may become time standard

Oct. 1, 1996
A new mercury-based atomic clock under development at the National Institute of Standards and Technology (NIST) is expected to offer accuracy at least an order of magnitude better than the best atomic cesium standard whose ground-state hyperfine transition currently defines the second.

A new mercury-based atomic clock under development at the National Institute of Standards and Technology (NIST, Boulder, CO) is expected to offer accuracy at least an order of magnitude better than the best atomic cesium standard whose ground-state hyperfine transition currently defines the second. Using input at 257 nm from a frequency-doubled argon-ion laser and at 792 nm from a master-oscillator/power-amplifier diode laser (SDL; San Jose, CA), the NIST group generates coherent output at 194 nm using a sum-frequency process in b-barium borate. Radiation pressure cooling with the 194-nm output brings the mercury atoms nearly to rest. Because they are tightly confined electromagnetically in a linear Paul trap, the cooled atoms crystallize into a string of individual atoms. Mercury has a ground-state hyperfine transition at 40 GHz, compared to the cesium hyperfine transition at 10 GHz. Led by James Bergquist, the NIST group is now exploring the stability and accuracy of a standard based on this transition, working toward a future time standard.

The cooled mercury atoms fluoresce strongly when irradiated at 194 nm. A fast lens focuses scattered light from the atoms onto an ultraviolet imaging tube; the images can be displayed in real time or captured by computer, as was the image above.

About the Author

Kristin Lewotsky | Associate Editor (1994-1997)

Kristin Lewotsky was an associate editor for Laser Focus World from December 1994 through November 1997.

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!