Gallium nitride-based, double-heterostructure diode laser emits blue light

March 1, 1998
Researchers at Boston University (Boston, MA) have entered the blue laser fray with the first gallium nitride-based, double-heterostructure diode laser to emit blue light. The optically pumped indium gallium nitride/gallium nitride (InGaN/GaN) devices were grown on a sapphire substrate, and the laser cavities were fabricated by cleaving. To grow the devices, the grou¥initially deposited a 10-µm-thick buffer layer of GaN on c-plane sapphire, using hydride vapor-phase epitaxy. After that a

Gallium nitride-based, double-heterostructure diode laser emits blue light

Researchers at Boston University (Boston, MA) have entered the blue laser fray with the first gallium nitride-based, double-heterostructure diode laser to emit blue light. The optically pumped indium gallium nitride/gallium nitride (InGaN/GaN) devices were grown on a sapphire substrate, and the laser cavities were fabricated by cleaving. To grow the devices, the grou¥initially deposited a 10-µm-thick buffer layer of GaN on c-plane sapphire, using hydride vapor-phase epitaxy. After that a 0.5-µm GaN bottom cladding layer, a 1000-Å InGaN:Si active region and a 2200-Å GaN to¥cladding layer were deposited by metal-organic vapor-phase epitaxy.

The devices were pumped with a nitrogen laser emitting at 337 nm with a pulsewidth of 800 ps and a maximum power density of 98 MW/cm2. Above the incident threshold intensity of 1.3 MW/cm2, the researchers observed a shar¥emission peak at about 395 nm. The peak achieved a minimum full width at half maximum of 13.5 meV at an incident intensity of 3.1 MW/cm2. The researchers point to the simultaneous occurrence of a shar¥reduction in linewidth along with a shar¥increase in quantum efficiency and high TE polarization on passing the incident threshold power density as evidence of lasing. The grou¥also expects that the double heterostructure will avoid potential problems associated with multiple-quantum-well devices, such as high resistance and nonuniform excitation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!