Crack-free gallium nitride layers grow on silicon substrates

July 1, 2006
Researchers at Kansas State University (Manhattan, KS) have reported successful growth of high-quality crack-free gallium nitride (GaN) epilayers on 6-in.-diameter silicon (Si) substrates using metal-organic chemical-vapor deposition to fabricate blue-emitting nitride multiple-quantum-well light-emitting diodes (LEDs).

Researchers at Kansas State University (Manhattan, KS) have reported successful growth of high-quality crack-free gallium nitride (GaN) epilayers on 6-in.-diameter silicon (Si) substrates using metal-organic chemical-vapor deposition to fabricate blue-emitting nitride multiple-quantum-well light-emitting diodes (LEDs). Previously demonstrated nitride growth on Si substrates has been limited to 2 in. for photonic structures and 4 in. for heterojunction field-effect transistors.

For the growth of nitride materials on large-area Si substrates, however, problems associated with cracks and bowing can be severe because of the increased difficulty of maintaining temperature uniformity and mechanical strength over a larger area. The relatively small lattice constant of an aluminum nitride nucleation layer can serve to counterbalance the thermally induced tensile strains by inducing compressive strain on subsequent GaN layers, according to previous studies, thereby supporting the growth of crack-free and relatively thick GaN layers. The Kansas State team has exploited this potential to fabricate 492 nm blue LEDs on a silicon substrate and achieved an optical-power output of about 0.35 mW at 20 mA, measured from the top surface of unpackaged LED chips. Contact Hongxing Jiang at [email protected].

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!