Toothed iris diaphragm helps control radial intensity inside a femtosecond-laser filament core

Aug. 11, 2020
A “stellate” iris diaphragm controls intensity inside a filament, while drilling into a metal sheet characterizes filament beam shape.
2006 Lfw Nb Z05

Plasma-based filamentation can occur when an intense femtosecond laser pulse propagates in optically transparent media such as air. The phenomenon has found applications in imaging, microfabrication, remote sensing, water condensation, and triggering and guiding discharges, in which the radial distribution of laser fluence inside the filament core is crucial. However, directly measuring and controlling the fluence within a filament core (which is less than 100 μm in diameter) is still a challenge due to the extremely high intensity. Researchers from the Shanghai Institute of Optics and Fine Mechanics at the Chinese Academy of Sciences (CAS; Beijing) have demonstrated new ways to directly measure and successfully control the laser fluence inside a single filament core.

In the experiments, by examining filament-fabricated microstructures on materials, the radial fluence distribution across the filament core and its evolution along the filament were spatially resolved for the first time. Instead of using a traditional circular iris diaphragm, a stellate iris was introduced to suppress iris diffraction effects. As a result, a higher laser fluence and a denser plasma inside the filament cores were generated; this was further confirmed by measuring the radial fluence inside filament cores using the filaments to drill through 15-μm-thick aluminum sheets and then looking at the resulting holes. Experimental results are in agreement with numerical simulations obtained by solving the nonlinear Schrödinger equation. In addition to understanding the filamentation process and its control, the results may also be valuable for other filament-based laser applications such as rainmaking and lightning control. Reference: H. Guo et al., Opt. Express (2020); https://doi.org/10.1364/oe.392827.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!