Quantum Sources: Squeezed quantum dots create coherent streams of quantum-ready photons

Aug. 1, 2019
By squeezing quantum dots using unique semiconductor-based processes, coherent single photons are generated that can be used for on-chip quantum photonics that demand identical photons from multiple integrated sources.

While several research groups have already demonstrated tunable single-photon emission from a few quantum dots when confined in an optical waveguide cavity or a modified LED structure, researchers at the U.S. Naval Research Laboratory (NRL; Washington, DC) have tuned the emission wavelength of three indium arsenide (InAs) quantum dots inside a waveguide to be exactly the same by “squeezing” them.1 This enabled a demonstration of an entangled, superradiant state through the emission process of quantum dots embedded in the same waveguide.

These InAs dots are considered to be at the forefront of solid-state single-photon sources and can be precisely positioned, making them promising for on-chip networks for quantum technologies such as computing and communication in a miniature, scalable platform with low power consumption. However, the inability to create a network of dots on the same chip with identical emission wavelength has been a barrier to realizing these quantum technologies.

Squeezing the dots

The ability to fabricate quantum dots with homogeneous physical size and emission properties is extremely challenging. Furthermore, tuning of quantum dots has only been marginally successful through the application of strain using piezoelectric actuators, dielectric capping layers, laser annealing, and electrical bias. Unfortunately, these methods cannot independently tune different quantum dots within the same photonic structures or can lead to degradation of the surrounding semiconductor materials or the quantum dots themselves.

These issues have now been addressed by the NRL researchers through introduction of controlled mechanical strain in specific areas of a photonic structure—with submicron spatial resolution—using laser modification of a thin (around 40 nm) encapsulating layer of hafnium oxide (HfO2). The local strain tailors the emission wavelength of individual quantum dots to a preselected value and can be monitored in real time.

To induce squeezing, a 532 nm laser illuminates a section of the waveguide, crystallizing the initially amorphous HfO2, which compresses the semiconductor and blue-shifts the quantum-dots’ emission wavelength without degrading their optical qualities or affecting quantum dots outside the illuminated region. The laser heating power, spot size, and duration can be adjusted to modify how much the quantum-dot emission energy is tuned. Importantly, this technique allows bringing quantum dots with very narrow emission linewidths into mutual resonance, enabling a quantum-entangled superradiant state of three dots coupled to the same waveguide (see figure).

“This technique creates new possibilities for exploring phenomena that emerge from quantum interactions between nanoscale emitters,” says Joel Grim, physicist at NRL. “It’s an exciting capability because of its potential to enable the qubit scaling necessary to realize future quantum technologies on a chip.”

REFERENCE

1. J. Q. Grim et al., Nat. Mater. (2019); https://www.nature.com/articles/s41563-019-0418-0.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Achieving Ultralow-Loss Photonics Array Alignment

Feb. 23, 2024
Two- and three-dimensional photonics arrays are commonly used for coupling light in photonic integrated circuits. With the increasing demand for ultralow-loss transmission in ...

Control Techniques in Laser Processing

Feb. 23, 2024
A laser processing tool is only as good as the motion equipment underneath it. One must first consider design characteristics of a motion platform, and second, advanced control...

High-Precision Laser Processing for Medical Device Manufacturing

Feb. 23, 2024
Laser processing has been used for decades to manufacture tubular medical devices, such as stents, valves, and vascular grafts. However, achieving the precision that is necessary...

Selecting Optimal Positioning Equipment for Laser Direct-Write Processes

Feb. 23, 2024
Choosing the optimal automation equipment for a given process requires a thorough understanding of the process parameters and the effects of positioning errors on the results....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!