Funding to improve QA in additive manufacturing of turbine components

Aug. 2, 2019
Researchers have been awarded over $1 million in funding towards development of a quality assurance method for additive manufacturing of gas turbine components.
206246 Web 5d4476b42caae

The U.S. Department of Energy (Washington, DC), through its University Turbine Systems Research program, has awarded researchers at the University of Pittsburgh's Swanson School of Engineering (Pittsburgh, PA) with $802,400 to find an effective quality assurance method for additive manufacturing (also known as 3D printing) of gas turbine components.

The three-year project has received additional support from the University of Pittsburgh ($200,600), resulting in a total grant of $1,003,000. 

Xiayun (Sharon) Zhao, Ph.D., assistant professor of mechanical engineering and materials science at the University of Pittsburgh, will lead the research, working with Albert To, associate professor of mechanical engineering and materials science at the University of Pittsburgh, and Richard W. Neu, professor in the Georgia Institute of Technology's School of Mechanical Engineering (Atlanta, GA). The research team will use machine learning to develop a cost-effective method for rapidly evaluating, either in-process or offline, the hot gas path turbine components (HGPTCs) that are created with laser powder-bed fusion (LPBF) technology, which can produce complex metal components faster and at lower cost. 

"...because there's a possibility that the components will have porous defects and be prone to detrimental thermomechanical fatigue, it's critical to have a good quality assurance method before putting them to use," explains Zhao. "The quality assurance framework we are developing will immensely reduce the cost of testing and quality control and enhance confidence in adopting the LPBF process to fabricate demanding HGPTCs." 

For more information, please visit engineering.pitt.edu.

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!