3D printing method builds, repairs aircraft parts

July 13, 2018
A team of researchers is using laser metal deposition technology (a 3D printing technique) to build and repair defense aircraft parts.

A team of researchers at RMIT University (Melbourne, Australia) is using laser metal deposition technology (a 3D printing technique) to build and repair defense aircraft parts in a two-year collaboration with RUAG Australia (Bayswater, Australia) and the Innovative Manufacturing Cooperative Research Centre (IMCRC; Carlton, Australia).

Related: Lockheed Martin, RMIT University form additive manufacturing partnership

Laser metal deposition technology feeds metal powder into a laser beam, which when scanned across a surface adds new material in a precise, web-like formation. The metallurgical bond created has mechanical properties similar, or in some cases superior, to those of the original material. "It's basically a very high-tech welding process where we make or rebuild metal parts layer by layer," explains Professor Milan Brandt, who is leading the work. He says the concept is proven and prospects for its successful development are extremely positive.

By enabling onsite repair and production of parts, the technology could completely transform the concept of warehousing and transporting for defense and other industries, says Neil Matthews, Head of Research and Technology at RUAG Australia. Currently, replacement parts typically need to be transported from local or overseas storage and suppliers.

"Instead of waiting for spare parts to arrive from a warehouse, an effective solution will now be on-site," Matthews says. "For defense forces, this means less downtime for repairs and a dramatic increase in the availability and readiness of aircraft."

The technology will apply to existing legacy aircraft as well as the new F35 fleet. The technology is also being adopted in RUAG's recently established robotic laser additive manufacturing cell.

"The project's benefits to Australian industry are significant. Although the current project focuses on military aircraft, it is potentially transferable to civil aircraft, marine, rail, mining, oil, and gas industries," says David Chuter, CEO and managing director of the IMCRC. "In fact, this could potentially be applied in any industry where metal degradation or remanufacture of parts is an issue."

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!