Advanced manufacturing hub opens in greater Los Angeles

March 13, 2017
USC Viterbi has launched its Center for Advanced Manufacturing (CAM), a future regional hub for technological innovation.

The University of Southern California Viterbi (USC Viterbi; Los Angeles, CA) School of Engineering has launched its Center for Advanced Manufacturing (CAM), a future regional hub for technological innovation. The CAM, which opened on February 24, 2017, and is the only academic facility of its type in greater Los Angeles, will allow USC Viterbi to collaborate with emerging and local businesses to spur job growth and fuel the economy.

The CAM features a design studio and a machining lab equipped with 3D printers, laser cutters, industrial robots, and automation equipment. In addition, the center has a classroom dedicated to training and instruction for undergraduates and graduate-level students, as well as the community.

At the CAM launch party, several USC Viterbi graduate students showed off cutting-edge technologies, including a demonstration of an automated robotic arm installing miniature jet engine blades into a rotor. A robot shaped like an alligator, and programmed to simulate its movements, scurried across a table. Nearby, a 3D printer built a small plastic propeller layer by layer.

(L-R) USC Viterbi Dean Yannis C. Yortsos, SK Gupta, Fernando Delgado of Supervisor Hilda Solis's office, Adrienne Lindgren of Mayor Eric Garcetti's office, and USC Vice President of Research Randy Hall. (Photo by Peter Shin)

Automated high-end manufacturing—a software- and data-driven approach to building things that promotes greater efficiencies, flexibility, and mass customization without increasing costs—will create scores of high-paying jobs in engineering services, creative design, finance, construction, and service positions, says Satyandra K. (SK) Gupta, CAM founding director and the Smith International Professor in the Aerospace and Mechanical Engineering Department at USC Viterbi.

"With America's computing expertise and technological know-how, there is no reason that the US can't play a major role in the production of drones, advanced batteries, driverless cars, and biomedical devices," Gupta says. "And because the robots and 3D printing machines used in advanced manufacturing cost the same in the US as in China or Mexico, much of the production of the Fourth Industrial Revolution could take place in America."

For more information, please visit http://cam.usc.edu.

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!