3D printing of chalcogenide glass is promising for low-cost manufacturing

April 23, 2019
3D printing of optical materials will pave the way for a new era of designing and combining materials.

A team of researchers from the Centre d’Optique, Photonique et Laser (COPL) at Université Laval (Québec City, QC, Canada) has 3D-printed chalcogenide glass, a material used to make optical components that operate at mid-infrared wavelengths. The ability to 3D-print this glass could make it possible to manufacture complex glass components and optical fibers for new types of low-cost sensors, telecommunications components, and biomedical devices.

In a paper that describes the work, research team leader Patrick Larochelle and his colleagues show how they modified a commercially available 3D printer for glass extrusion. The method is based on the commonly used technique offused deposition modeling, in which a plastic filament is melted and then extruded layer-by-layer to create detailed 3D objects.

"3D printing of optical materials will pave the way for a new era of designing and combining materials to produce the photonic components and fibers of the future," says Yannick Ledemi, a member of the research team. "This new method could potentially result in a breakthrough for efficient manufacturing of infrared optical components at a low cost."

Chalcogenide glass softens at a relatively low temperature compared to other glass. Recognizing this, the research team increased the maximum extruding temperature of a commercial 3D printer from around 260° to 330°C to enable chalcogenide glass extrusion. They produced chalcogenide glass filaments with dimensions similar to the commercial plastic filaments normally used with the 3D printer. Finally, the printer was programed to create two samples with complex shapes and dimensions.

"Our approach is very well suited for soft chalcogenide glass, but alternative approaches are also being explored to print other types of glass," Ledemi says. "This could allow fabrication of components made of multiple materials. Glass could also be combined with polymers with specialized electro-conductive or optical properties to produce multifunctional 3D-printed devices."

3D printing would also be useful for making fiber preforms—a piece of glass that is pulled into a fiber—with complex geometries or multiple materials, or a combination of both. Once the design and fabrication techniques are fine-tuned, the researchers say that 3D printing could be used for inexpensive manufacturing of high volumes of infrared glass components or fiber preforms.

"3D-printed chalcogenide-based components would be useful for infrared thermal imaging for defense and security applications," Ledemi says. "They would also enable sensors for pollutant monitoring, biomedicine, and other applications where the infrared chemical signature of molecules is used for detection and diagnosis."

The researchers are now working to improve the design of the printer to increase its performance and enable additive manufacturing of complex parts or components made of chalcogenide glass. They also want to add new extruders to enable co-printing with polymers for the development of multimaterial components.

The research is part of the PRinting of exotic multi-maTErial fibers (PROTEus) project conducted within the frame of the International Associated Laboratory Lumière Matière Aquitaine Québec (LIA-LuMAQ). PROTEus brings together researchers from Canada and France to develop new ways to use additive manufacturing and direct laser writing methods to combine multiple materials to make fiber-based photonic components and devices.

Full details of the work appear in the journal Optical Materials Express.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!