New materials processing lab for picosecond laser processing

July 17, 2009
The cleanroom facility at Deep Photonics features laser processing of microelectronics, semiconductors, and photovoltaic materials

Deep Photonics announced the opening of a new materials processing applications lab at its corporate headquarters in Corvallis, Oregon. The 1500 sq. ft. cleanroom enables the company to work closely with OEMs and manufacturers to test material samples and develop processes with its picosecond fiber lasers. The lab will demonstrate how ultrafast fiber lasers are a unique and superior processing solution for a wide range of materials, including historically difficult-to-process materials for conventional nanosecond lasers, such as thin films, glasses, dielectrics, and metals.

The facility includes state-of-the-art automation and analysis tools for inspection/measurement of processed materials, including a linear stage in the cleanroom. This high-accuracy, high-throughput stage allows Deep Photonics to develop film side scribing for a-Si solar thin films at over two meters per second and deliver that process to OEMs building systems for the thin film scribing for the solar industry. Customers can access FIB (Focused Ion Beam) images, a profile meter, and a variety of optical and electrical measurements of their samples the same day, reducing the cycle time for process development.

In the lab, customers also have access to Deep Photonics' lasers, including the FLP-1064-PPP, FLP-532-PPP, and the FLP-355-PPP infrared, visible and ultraviolet fiber laser, which combines high output power with stability and reliability needed for demanding laser applications. The lasers feature Picosecond Packet Pulsing (P3) technology, providing a significant innovation in cold ablation of materials. P3 technology delivers accurate depth control with pulse packet energy effective for a variety of materials currently being utilized by the semiconductor, electronics, and solar industry. This proprietary pulsing technology provides an optimum combination of precise, efficient material ablation while virtually eliminating the destructive effects due to thermal heating of adjacent material. The lab is well equipped with optics, stages, microscopes, and the other tools required to do process development. It is staffed by process engineers and laser scientists with years of experience in laser materials interaction.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!