InnoLas cell cutting technology can increase PV module power output

Sept. 16, 2014
A 6-month, real-world outdoor measurement in Germany using half-cell modules confirmed a +3 percent higher average module power yield in comparison to standard modules, and represents a strong argument of using cell cutting to reduce C2M losses.

Krailling, Germany - Increasing cell efficiency is one way to reduce the cost of solar power. Reduction of cell-to-module losses during module assembly presents another strategy to allow a significant increase of photovoltaic (PV) module power output by integrating only one additional process step.

Device-inherent resistivity, together with high photo-induced current of solar cells within one string, is causing significant electrical losses when cell-to-cell interconnection takes place during the stringing process. This represents one of the main contributors to electrical performance and has therefore a high impact onto later module efficiency.

When using half or quarter cells instead of full cells, the impact of cell resistivity in one string can be lowered due to reduction of photo-induced current per unit cell. As a result of German research institutes, the output power of half-cell modules increases up to 10-15W, driven by significantly higher Isc and FF.

A 6-month, real-world outdoor measurement in Germany using half-cell modules confirmed a +3 percent higher average module power yield in comparison to standard modules, and represents a strong argument of using cell cutting to reduce C2M losses.

InnoLas offers an integrated solution based on its new ILM-2 laser machine and handling platform for an advanced precise and high-aspect ratio laser grooving process, together with a soft breaking method. With a high throughput of 2850 cells/h of incoming full cells, the machine package represents the first production cell cutting tool in the market.

"We see an increasing demand for cell cutting solutions in the market," says Markus Nicht, CEO of InnoLas Solutions. "That is why we designed the ILM-2 as a modular machine concept that can be used as a stand-alone or in-line system, with the option to use different laser sources and different automation concepts."

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!