Extreme laser micromarking application for nuclear research

April 15, 2013
Potomac Photonics completes project for U. Michigan supporting research on how reactors affect different types of metal alloys.

Lanham, MD - Potomac Photonics recently completed a precision laser micromarking project for the University of Michigan that helps support research on how extreme conditions in nuclear power reactors affect different types of metal alloys.

In order to keep track of the 100 samples of each of eight different types of alloys that will be placed in a high flux nuclear reactor, each was assigned a unique three-digit code. This code had a maximum height of 250 microns and was to be laser marked on parts that were only 3 mm in diameter and 250 microns thick. These markings will allow researchers to identify each sample and effectively trace what conditions and experiments it was exposed to.

After exposure, the mechanical properties of the samples were measured by shear punch and hardness indentation. Thus, the surfaces of the samples need to be free of any defects. The structure and chemistry of the material will be measured by electron microscopy and atom probe tomography.

Potomac Photonics designed and built a special fixture capable of holding the miniature samples so the samples could be marked quickly in precise locations. In addition, the process was capable of marking eight different types of material and was developed so that each of the markings could be read at a minimal magnification level of 15X.

Micromarking technology is becoming more prevalent in a wide array of applications, including serialization of microdevices, covert identification, and counterfeit detection. In determining the appropriate laser solution, the critical factors to consider are part size, material, and mark size requirements. Potomac has a broad range of micromarking technology with the capability to mark almost any material with features as small as 1 micron.

____

Image via Shutterstock

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!