Extreme laser micromarking application for nuclear research

April 15, 2013
Potomac Photonics completes project for U. Michigan supporting research on how reactors affect different types of metal alloys.

Lanham, MD - Potomac Photonics recently completed a precision laser micromarking project for the University of Michigan that helps support research on how extreme conditions in nuclear power reactors affect different types of metal alloys.

In order to keep track of the 100 samples of each of eight different types of alloys that will be placed in a high flux nuclear reactor, each was assigned a unique three-digit code. This code had a maximum height of 250 microns and was to be laser marked on parts that were only 3 mm in diameter and 250 microns thick. These markings will allow researchers to identify each sample and effectively trace what conditions and experiments it was exposed to.

After exposure, the mechanical properties of the samples were measured by shear punch and hardness indentation. Thus, the surfaces of the samples need to be free of any defects. The structure and chemistry of the material will be measured by electron microscopy and atom probe tomography.

Potomac Photonics designed and built a special fixture capable of holding the miniature samples so the samples could be marked quickly in precise locations. In addition, the process was capable of marking eight different types of material and was developed so that each of the markings could be read at a minimal magnification level of 15X.

Micromarking technology is becoming more prevalent in a wide array of applications, including serialization of microdevices, covert identification, and counterfeit detection. In determining the appropriate laser solution, the critical factors to consider are part size, material, and mark size requirements. Potomac has a broad range of micromarking technology with the capability to mark almost any material with features as small as 1 micron.

____

Image via Shutterstock

Sponsored Recommendations

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Understanding Practical Uses and Optimization Techniques for Fluorescence Optical Filters

Feb. 26, 2025
Learn about optical fluorescence and which optical filters to include in your instrument set up. See more with Semrock filter sets.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!