Project works to develop laser welding processes for thick metal sheets

Jan. 2, 2019
A joint project is working to establish robust, pure laser welding processes for steel sheet thicknesses up to 30 mm.

HANNOVER, GERMANY – A joint project led by Laser Zentrum Hannover (LZH), together with electronics manufacturer Held Systems Deutschland (Heusenstamm, Germany), industrial laser maker Laserline (Mülheim-Kärlich, Germany) and shipbuilder Meyer Werft (Papenburg, Germany), is working to establish robust, pure laser welding processes for steel sheet thicknesses up to 30 mm. For this purpose, the team members are bringing diode laser beam sources to peak performance.

Processes for joining maritime steel components have great development potential in terms of production costs and productivity (FIGURE 1). The frequently used submerged arc welding process is comparatively slow and involves significant workpiece distortion, and an alternative process called laser-arc hybrid welding requires labor-intensive edge preparation and is not very flexible.

FIGURE 1. New laser welding processes will make welding of thick metal sheets in shipbuilding more efficient and less expensive. (Copyright: Meyer Werft/M. Wessels)

For large steel sheet thicknesses ranging from 12 to 30 mm in particular, no method has been able to prevail against submerged arc welding. Recognizing this, the project members want to develop robust, pure laser welding processes for thick metal sheet welding in the maritime sector. In the project dubbed Thick Metal Sheet Welding by High-Power Diode Lasers for Maritime Applications (DIOMAR), Laserline will develop new diode laser beam sources with maximum output power up to 60 kW in continuous-wave mode. The aim of the DIOMAR project is to achieve high-quality joints with high welding speeds, and the partners want to reduce the costs for edge preparation and the amount of additional material compared to existing joining methods (FIGURE 2).

FIGURE 2. The aim of the DIOMAR project is to establish new laser welding processes based on high-power lasers in the maritime sector. (Copyright: Meyer Werft/I. Fiebak)

The application-oriented development takes place in parallel in a laser laboratory and in a shipyard-like test environment, making it possible to quickly test, evaluate, and optimize processes.

For more information, please visit www.lzh.de.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!