Mark Waterland

Associate Professor, Institute of Fundamental Sciences (Chemistry)

My research is driven by an interest in the development and properties of new molecular and nanostructured materials, for energy conversion, energy storage and chemical sensing. My group has expertise in Raman spectroscopy including resonance Raman spectroscopy, theory of Raman intensities, surface and plasmon enhanced Raman and we have recently built a low-frequency Raman microscopy system.

Our current research activities focus on the chemistry and spectroscopy of graphene nanoribbons. We use our expertise in Raman spectroscopy to analyse the edge structure of graphene nanoribbons produced by mechanical fracturing. Edge structure determines the physical properties and chemistry of the graphene nanoribbons. Controlling the functional groups at the nanoribbons provides a route to controlling the physical properties of nanoribbon suspensions and ultimately, to controlling the self-assembly of nanoribbon structures.

We are applying Raman spectroscopy to complex analytical problems. We collaborate with medical researchers, veterinarians, ecologists, plant biologists, engineers and food scientists and work with statisticians and mathematicians to apply state-of-the-art data analysis to Raman data sets, for the purpose of classification (e.g. skin cancers) or following chemical or physical changes to various materials.