Bidirectional laser emits two wavelengths

Dec. 20, 1999
Reverse the voltage on an ordinary diode laser and it will stop emitting light--sometimes permanently.

Reverse the voltage on an ordinary diode laser and it will stop emitting lightsometimes permanently. In contrast, another form of semiconductor laser, the quantum cascade (QC) laser, is unipolar and thus offers the possibility of use at both positive and negative voltage bias. A group at Lucent Technologies' Bell Labs (Murray Hill, NJ) has for the first time built such a bidirectional QC laser and has done so in such a way that it emits one wavelength for a positive bias and a different wavelength for a negative bias. Potential uses include differential spectroscopy, says Clair Gmachl, a Bell Labs researcher.

Made up of many layers that form a multiple quantum-well structure, a QC laser emits at a wavelength determined by its layer thicknesses rather than by the gain material. The bidirectional laser consists of 17 layers that alternate in composition between aluminum indium arsenide and gallium indium arsenide. Contained in the structure are two active regions separated by 35 nm and sandwiching an injector region. Under a positive bias, the injector causes one active region to emit; under a negative bias, the other active region emits. If the two active regions are made so that they are not identical in layer structure, then light at two differing wavelengths is the result, emitted independently of each other and separated in time. Because the prototype lasers operate best at temperatures below 150 K, they are mounted on the cold finger of a helium flow cryostat. The lasers produce 50-ns pulses at up to a 100-kHz repetition rate, with peak power reaching 300 mW.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!