Fabrication scheme reduces PIN dark current by order of magnitude

Nov. 22, 1999
Researchers at Bell Laboratories, the research arm of Lucent Technologies (Murray Hill, NJ), have developed a wafer-bonding method that has allowed them to decrease the dark current in silicon/indium gallium arsenide (Si/InGaAs) PIN photodetectors by an order of magnitude.

Researchers at Bell Laboratories, the research arm of Lucent Technologies (Murray Hill, NJ), have developed a wafer-bonding method that has allowed them to decrease the dark current in silicon/indium gallium arsenide (Si/InGaAs) PIN photodetectors by an order of magnitude. The previous bonding method involved placing the Si and InGaAs wafers in contact under 1 to 10 MPa of pressure at a temperature of 650°C, which produced substantial stress at the heterointerface. In the new method, the two wafer surfaces were first cleaned and flattened within atomic tolerances such that x-ray photoemission spectroscopy indicated less than 0.2 monolayers of carbon, oxygen, fluorine, and chlorine on the surfaces, and atomic force microscopy measured root-mean-square roughnesses of less than 1.5 Å. The two surfaces were then placed in contact for Van der Waals bonding under a weight of about 5 lb. The 650° temperature annealing was not applied in this case until after the weight was removed, which reduced thermal expansion stress and enabled elastic accommodation of thin device layers. The improved heterointerface resulted in a minimum dark current of 180 pA under a reverse bias of -10 V, representing an order-of-magnitude improvement over the 2-nA minimal dark current of devices fabricated to date.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!