Far-UV spectroscopy enables observation of hottest known white dwarf

Dec. 15, 2008
December 15, 2008--A team of German and American astronomers say that white dwarf KPD 0005+5106 is among the hottest stars ever known, based on observations using NASA's space-based Far-Ultraviolet Spectroscopic Explorer (FUSE). The star, they say, has a surface temperature of 200,000 K-- so hot that its photosphere shows emission lines in the UV spectrum, a phenomenon never before seen.

December 15, 2008--A team of German and American astronomers say that white dwarf KPD 0005+5106 is among the hottest stars ever known, based on spectroscopic observations made with NASA's space-based Far-Ultraviolet Spectroscopic Explorer (FUSE). The astronomers, from Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard-Karls-Universität (Tübingen, Germany) and Johns Hopkins University (Baltimore, MD) present their discovery in the journal Astronomy & Astrophysics. They demonstrate that this white dwarf has a temperature of 200,000 K at its surface. It is so hot, in fact, that its photosphere exhibits emission lines in the ultraviolet spectrum, a phenomenon that has never been seen before. These emission features stem from extremely ionized calcium (nine-fold ionized, i.e., CaX), which is the highest ionization stage of a chemical element ever discovered in a photospheric stellar spectrum.

Stars of intermediate mass (1-8 solar masses) terminate their life as an Earth-sized white dwarf after the exhaustion of their nuclear fuel. During the transition from a nuclear-burning star to the white dwarf stage, the star becomes very hot. Many such objects with surface temperatures around 100,000 Kelvin are known. Theories of stellar evolution predict that the stars can be much hotter. However, the probability of catching them in such an extremely hot state is low, because this phase is rather short-lived.

Since its discovery as a faint blue star in 1985, KPD 0005+5106 attracted much attention because optical spectra taken with ground-based telescopes suggested that this white dwarf is very hot. In addition, it belongs to a particular class of rare white dwarfs whose atmospheres are dominated by helium. A detailed analysis of these spectra, combined with ultraviolet observations performed with the Hubble Space Telescope (HST), had led to the conclusion that KPD 0005+5106 has a temperature of 120 000 Kelvin, which made it the hottest member of its class. It was, however, rivaled by other similarly hot white dwarfs, discovered a few years ago in the Sloan Digital Sky Survey.

The FUSE observatory performed spectroscopy in the far-ultraviolet wavelength range, which is inaccessible to HST. During its lifetime (1999-2007), FUSE frequently observed KPD 0005+5106 because it was used as a calibration target to track the telescope's performance. The team of astronomers, including K. Werner, T. Rauch, and J.W. Kruk, made use of all accumulated data and obtained a dataset of outstanding quality. Close inspection revealed the presence of two emission lines from calcium, and detailed stellar atmosphere modeling confirmed their photospheric origin. The analysis proves that the temperature must be 200 000 Kelvin, for the presence of these emission lines to be possible.

Although theory predicted the existence of such hot white dwarfs, the star nevertheless represents a challenge to our concepts of stellar evolution because of its composition. The measured calcium abundance (1-10 times the solar value) in combination with the helium-rich nature of its atmosphere represents a chemical surface composition that is not predicted by stellar evolution models.

For more information, please see the article in Astronomy.

Posted by Barbara G. Goode, [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!