Laser diodes emit at 450 nm for an estimated 200 hours

Feb. 7, 2000
Laser diodes made of indium gallium nitride (InGaN) multiple quantum wells emitting between 390 and 420 nm have achieved continuous-wave (CW) operation at room temperature of more than 10,000 hours.

Laser diodes made of indium gallium nitride (InGaN) multiple quantum wells emitting between 390 and 420 nm have achieved continuous-wave (CW) operation at room temperature of more than 10,000 hours. While such violet laser diodes are useful for optical storage devices, applications such as laser-based full-color displays require a wavelength of 450 nm for a true blue color. The wavelength can be increased by raising the amount of indium in the InGaN well layers, but this causes the threshold current density to increase dramatically.

Shuji Nakamura and colleagues at Nichia Chemical Corp. (Kaminaka, Japan) found that they could not achieve room-temperature CW operation with two or three quantum wells, but with a single-quantum-well structure they could make diodes that emitted at 450 nm with an estimated lifetime of 200 hours. This lifetime, which is too short for commercial purposes, is probably due to poor crystal quality of the well layer, Nakamura said. If the problems of 450-nm diodes can be solved, Nakamura said it should be possible to fabricate InGaN-based laser diodes at longer (green) wavelengths, where no such devices currently exist. Shuji Nakamura has since accepted an appointment to the faculty of the University of California at Santa Barbara.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!