Surface coupling adjusts red-laser-diode wavelength

Feb. 14, 2000
By applying a contradirectional surface-mode-coupling (SMC) technique, researchers at the Institut für Festk?rperelektronik, the Technichische Universitt Wien (Vienna, Austria), and the Physikalisches Institut of the Universität Stuttgart (Stuttgart, Germany) have achieved single-longitudinal-mode surface emission from a horizontal-cavity red-emitting gallium indium phosphide/aluminum gallium indium phosphide (GaInP/AlGaInP) laser diode.

By applying a contradirectional surface-mode-coupling (SMC) technique, researchers at the Institut für Festkörperelektronik, the Technichische Universität Wien (Vienna, Austria), and the Physikalisches Institut of the Universität Stuttgart (Stuttgart, Germany) have achieved single-longitudinal-mode surface emission from a horizontal-cavity red-emitting gallium indium phosphide/aluminum gallium indium phosphide (GaInP/AlGaInP) laser diode. The scientists also demonstrated the capability to adjust wavelength characteristics just by changing the optical thickness of a surface waveguide through hydrogen fluoride etching. In addition, if the Fabry-Pérot mirrors are etched and not cleaved, the SMC technique allows monitoring and adjusting the emission wavelength of laser groups on the chip, providing a fairly straightforward way to create multiwavelength laser-diode arrays.

According to the researchers, the SMC principle is based on a coupling mechanism between the laser mode and the transverse electrically polarized surface mode that exists in a semitransparent metal/dielectric waveguide structure on the top of the laser diode. Phase-matching of the laser and the surface modes is achieved with a surface-relief grating in the top cladding of the waveguide. Either co- or contradirectional coupling is possible, depending on the grating period.—Paula Noaker Powell

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!