Quantum Computing: All-fiber QED system aims for deterministic rather than probabilistic quantum entanglement

May 1, 2019
An all-optical-fiber coupled-cavities quantum electrodynamics (QED) system demonstrates a reversible interaction between atoms and photons separated by 2 m of fiber—an important step towards a physical QED-based quantum computer.

A cavity quantum electrodynamics (QED) system is one in which atoms can interact with photons in a confined cavity. Since photons escaping from a cavity can travel long distances and enter another cavity, two cavity QED systems can be connected via a photonic channel. Ultimately, these coupled-cavity QED systems can be used to entangle distant atoms, leading to useful quantum effects such as quantum computers and networks.

Towards that end, researchers at Waseda University (Tokyo, Japan), the Japan Science and Technology Agency (JST; Saitama, Japan), and the University of Auckland (Auckland, New Zealand) built an all-optical-fiber-based, coupled-cavity QED system and have observed a reversible interaction between distant atoms and delocalized photons separated by up to 2 m—a record for this type of QED system.1 With this system, it will be possible to create deterministic (rather than probabilistic) quantum entanglement, which is the first step towards physical implementation of a QED-based distributed quantum computer.

Coupled-cavity implementation

In the experimental setup, two cavities measuring 0.92 and 1.38 m in length are connected by a length of optical fiber (with values of 1.23, 0.83, and 2.27 m) to facilitate quantum interactions between atoms and photons. Each cavity consists of a tapered optical fiber between two fiber Bragg grating (FBG) mirrors, effectively creating an expanded, evanescent mode field wherein photons can interact with several tens of atoms “trapped” in the tapered region (see figure).

To measure different interactions, the atoms are either loaded in the first cavity only, the second cavity only, in both cavities, or in neither cavity. The photon-atom interactions are measured by quantifying the spectral output of a laser probe beam input to the left side of the system as the connecting fiber lengths are varied.

Spectral output from the system with different atom-loading conditions and different lengths of connecting optical fiber are experimentally in good agreement with theoretical predictions for the dressed states of distant atoms with delocalized photons. Two empty cavities produce a triple-peak spectral signature with a strong “fiber-dark” central peak and two “fiber-bright” peaks. Atom-loaded cavities split the central fiber-dark peak into two, which is indicative of reversible interaction between distant atoms and delocalized photons in the fiber-dark mode.

The researchers have constructed a coupled-cavity QED system in which two nanofiber cavity QED systems are coherently connected via a meter-long fiber. One can deterministically create quantum entanglement between two quantum systems with reversible interaction between them, and this can be used to realize deterministic quantum gates in a quantum computer. Therefore, a large-scale coupled-cavity QED system will enable a “distributed” quantum computer, where quantum information is stored and processed in distant atoms connected to each other by photons. The current achievement is the first step towards this goal.

“It has been technically challenging to connect multiple cavity-QED systems based on conventional free-space cavities with sufficiently low losses to realize coherent coupling,” says Takao Aoki, professor at Waseda University. “For our all-optical-fiber-based cavities, we can easily connect them with minimal losses, simply by using a commercial fiber splicer,” he adds.

REFERENCE

1. S. Kato et al., Nat. Commun., 10, 1160 (Mar. 11, 2019).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!