FTIR spectroscopy enables prediction of tumor histopathology

April 1, 2008
At Pittcon 2008 (Mar. 2–7; New Orleans, LA), Rohit Bhargava from the University of Illinois (Urbana-Champaign) discussed his group’s work with Fourier-transform infrared (FTIR) spectroscopic imaging to automate the analysis and recognition of tissue structure and disease without the need for dyes, molecular probes, or human intervention.

At Pittcon 2008 (Mar. 2–7; New Orleans, LA), Rohit Bhargava from the University of Illinois (Urbana-Champaign) discussed his group’s work with Fourier-transform infrared (FTIR) spectroscopic imaging to automate the analysis and recognition of tissue structure and disease without the need for dyes, molecular probes, or human intervention. According to Bhargava, FTIR imaging is emerging as a preferred technique for high-throughput biomedical sampling applications, combining the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy.

Working closely with researchers from the National Institutes of Health (Bethesda, MD), Bhargava and colleagues are developing a high-fidelity spectrometer that combines a focal-plane-array detector with a conventional interferometer to potentially increase the speed of data acquisition several-fold. He says they have achieved mathematical noise reduction that enables an approximately 50- to 100-fold higher rate of data collection and have also used optical modeling to elucidate and resolve various confounding optical effects. The team’s technique has been used to automate human cancer diagnoses and grading for different tissue types by applying it to routine archival tissue samples. According to Bhargava, well-defined tests of statistical significance can provide insight into the conditions required to enable the prediction of patient and disease outcomes.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!