The right tool

Nov. 1, 2004
At home, under my kitchen sink, are two screwdrivers, a hammer, and a box of nails.

At home, under my kitchen sink, are two screwdrivers, a hammer, and a box of nails. In my basement, however, are three jam-packed toolboxes, a table covered with a further assortment of hand tools, and a dozen or so power tools. So where do I go when something in my house ceases to function? The kitchen sink, of course. Inevitably, though, I end up in the basement, where I can put my hands on the right tool for the job.

When faced with a need for a spectroscopic tool, optoelectronic engineers and scientists are lucky to have a large selection of high-quality spectrometers commercially available. But finding the right equipment may require more work than doing a quick search on the Web (a place even less tidy than under my kitchen sink). Most important is that the desired tool should be carefully matched with its application. While this task can sometimes be accomplished by one person, more often crucial information comes from others: a lab or field technician, a staff scientist, a production engineer, a customer. The optimal setup may end up being stock equipment, a custom-designed item, or an instrument still under development in a lab. But the extra effort needed to find the right tool for the job rarely goes unrewarded.

The first article in this Optoelectronics World concerns an ­application that is of global importance: measuring the concentration of carbon dioxide in the atmosphere. Here, Barbara Paldus and colleagues describe the use of cavity-ring-down spectroscopy, which has several benefits over traditional spectroscopic techniques for measuring carbon dioxide, including true absolute ­measurement capability.

Process control in the pharmaceutical industry relies on spectroscopy, which has traditionally been done with conventional large spectrometers. In the second article, Richard Crocombe describes the use of optical channel monitors-ultrastable miniature spectrometers developed for the telecommunications industry-for identifying and measuring the components going into a pharmaceutical product.

In the last article, Hector Lara and Ron Hartmayer start with a ­specific manufacturing step in the semiconductor industry-deposition of cobalt tungsten phosphide barrier caps in miniaturized copper interconnects-and describe the development of spectrometer types in which the same internal workings are designed into different exterior forms, one for versatile diagnostic use and another for integration into the deposition equipment itself.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!