Flexible terahertz metamaterial is useful in stealth applications

Jan. 1, 2012
A flexible metamaterial film created by researchers at the Technical University of Denmark and Boston University drastically reduces reflection of terahertz radiation, and can serve as a "stealth" material to minimize objects' radar cross-section at terahertz frequencies.

A flexible metamaterial film created by researchers at the Technical University of Denmark (Lyngby, Denmark) and Boston University (Boston, MA) drastically reduces reflection of terahertz radiation, and can serve as a "stealth" material to minimize objects' radar cross-section at terahertz frequencies. The material was wrapped around a metallic cylinder for test, reducing the cylinder’s cross-section by close to 400 times at 0.87 THz.

The film consists of a 12-μm-thick polyimide (PI) layer, a 200-nm-thick layer of gold (Au), a second 12-μm-thick layer of PI, and a second 200-nm-thick layer of Au patterned by photolithography. The pattern is a periodic array of split-ring resonators with a unit cell size of 75 μm and a resonator side length of 54.5 μm. Total active area is 20 × 10 mm, spanned by two 10 × 10 mm inactive areas so the cylinder could be rotated to vary reflectivity. For radar tests, electro-optically generated terahertz pulses showed a reduction in cross-section by an average factor of at least 10 in the ±20° angular range. Contact Peter Uhd Jepsen at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!