Joint effort targets 1064 nm single-photon counter

Nov. 15, 2007
CRANBURY, NJ AND GENEVA, SWITZERLAND—Princeton Lightwave and id Quantique have announce plans to develop the world’s first single-photon counting module optimized for 1064 nm by combining an optimized avalanche photodiode with integrated biasing and quenching electronics.

CRANBURY, NJ AND GENEVA, SWITZERLAND—Princeton Lightwave and id Quantique have announce plans to develop the world’s first single-photon counting module optimized for 1064 nm by combining an optimized avalanche photodiode with integrated biasing and quenching electronics.

Single photons are difficult to detect at a wavelength close to 1064 nm with high efficiency, low noise, and low jitter. This region of the spectrum lies at the edge of the sensitivity of both silicon and indium-gallium-arsenide (InGaAs) avalanche photodiodes. Currently, the best approach is to use a silicon avalanche-photodiodebased single-photon detector. Unfortunately, the efficiency does not exceed a few percent. Recognizing the importance of this part of the spectrum, Princeton Lightwave and id Quantique have decided to initiate a collaboration to close this detection hole by providing optimized detectors.

Princeton Lightwave will use its expertise in III-V single-photon detector design and fabrication to develop an InGaAs phosphide/indium phosphide avalanche photodiode optimized for Geiger-mode operation with high efficiency at 1064 nm. id Quantique will combine this photodiode with its integrated active quenching circuit, which guarantees high performance, thanks to fast quenching, low capacitance, and high reliability.

This detector module will target applications in the growing fields of free-space quantum-key distribution, remote sensing, and spectroscopy. It will be launched at the end of 2007 and will be demonstrated at the Photonics West show in San Jose, CA, January 20–24, 2008.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!