MOLECULAR BIOLOGY: New approach enables trapping of even the smallest fluorescently tagged molecules

July 1, 2011
Scientists have used anti-Brownian electrokinetic (ABEL) traps to study the dynamics of protein complexes and DNA chains in solution, but have been limited to larger molecules.

Scientists have used anti-Brownian electrokinetic (ABEL) traps to study the dynamics of protein complexes and DNA chains in solution, but have been limited to larger molecules. But small molecules, combined with their relative dimness and tendency to diffuse light more quickly, has enabled them to elude observation. Now, a new advance could allow the trapping and manipulation of any soluble molecule that can be fluorescently labeled.

In a recent paper, Harvard University researchers describe a feedback-based ABEL that compensates classical thermal noise to the maximal extent allowed by quantum measurement noise. The feedback is provided by a field programmable gate array (FPGA), which executes a custom-designed algorithm many thousands of times per second. This enabled them to trap single fluorophores with a molecular weight of < 1 kDa and a hydrodynamic radius of 6.7 Å for longer than one second, in aqueous buffer at room temperature—an achievement that represents the ability to trap objects with 800 times less mass than before.1

“We studied the binding of unlabeled RecA to fluorescently labeled single-stranded DNA,” the researchers report. “Binding of RecA induced changes in the DNA diffusion coefficient, electrophoretic mobility, and brightness, all of which were measured simultaneously and on a molecule-by-molecule basis.” This device extends the size range of molecules that can be studied by room temperature feedback trapping, and could lead to further studies of the binding of unmodified proteins to DNA in free solution.

1. A.P. Fields and A.E. Cohen, PNAS 108 (22), 8937–8942 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

From Life Sciences to Industry: Advancements in Optical Filters

Aug. 1, 2024
Optical filters are increasingly used in VR, advanced medical imaging, environmental monitoring, and satellite communications. This whitepaper highlights Chroma’s technical advancements...

Optical Filters for Semiconductor Inspection

Aug. 1, 2024
At Chroma Technology, we understand that the quality of your optical filters directly impacts the accuracy of your inspection processes and ultimately, the performance of your...

Optical Filters for Astronomy Applications

Aug. 1, 2024
At Chroma we manufacture the highest quality, narrow-band spectral line filters for astronomy. Our narrow passbands provide the precision and accuracy to ensure your spectral ...

Chroma is a leading manufacturer of highly precise optical filters

Aug. 1, 2024
Chroma is known for exceptional customer service and technical support. They produce durable, high-performance optical filters with a spectral range of 200-3000nm, serving diverse...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!