Microfluidic screening tool lessens drug development cycle

July 21, 2011
Researchers from A*STAR Institute of Microelectronics (IME) have developed a lateral, silicon-based drug screening tool in the form of a microfluidic chip that can simultaneously capture 12 individual cells, yielding 12 times higher throughput than conventional patch clamping.

Researchers from A*STAR Institute of Microelectronics (IME; Singapore) have developed a lateral, silicon-based drug screening tool in the form of a microfluidic chip that can simultaneously capture 12 individual cells, yielding 12 times higher throughput than conventional patch clamping. When tested with two different anti-diabetic drugs, corresponding electrophysiological readings could be determined by the device, showing its potential for multiple drug screening. With automation, the proposed device can dramatically shorten drug development cycle for rapid screening of ion-channel drug candidates.

IME’s silicon-based device consists of a silicon substrate with 1,536 inlets. The substrate holds the cell into position, followed by the application of suction through the side channels to form a tight seal for electrical measurement. The device holds promise for use by pharmaceutical and biotech companies for drug screening, and by academic researchers for mechanistic studies.

“The realization of our device using silicon as the primary material offers cost advantage over existing glass-based planar chip design, given silicon’s amenability for mass fabrication by standard processes," says Dr. Tushar Bansal, the IME scientist leading the work. "We are currently working with our industry counterparts to take this project to the next level.”

Professor Dim-Lee Kwong, Executive Director of IME, said, “The pre-clinical drug screening process is an arduous one, which IME hopes to address through this project. Our multidisciplinary efforts to tackle the throughput and cost issues will translate to faster access to new and more affordable drugs when they hit the market.”

The worldwide ion channel drug market is estimated to be worth $12 billion USD.

-----

Posted by Lee Mather

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!