Nanoscale MRI depends on AFM, fluorescence

May 1, 2010
"It's by far the most sensitive MRI imaging technique that has been demonstrated," says Raffi Budakian, assistant professor of physics at the University of Illinois at Urbana-Champaign, commenting on combining atomic force microscopy (AFM) with magnetic resonance imaging (MRI)–magnetic resonance force microscopy (MRFM).

"It's by far the most sensitive MRI imaging technique that has been demonstrated," says Raffi Budakian, assistant professor of physics at the University of Illinois at Urbana-Champaign, commenting on combining atomic force microscopy (AFM) with magnetic resonance imaging (MRI)–magnetic resonance force microscopy (MRFM). MRFM enables 3D visualization of tiny specimens. MRI offers unparalleled 3D imaging of living tissue without inflicting damage, but with resolution limited to several cubic microns.

In 2009, Christian Degen, assistant professor of chemistry at the Massachusetts Institute of Technology (MIT), and colleagues at the IBM Almaden Research Center, built the first MRFM device capable of imaging viruses in 3D.1 On April 25, 2010, the paper reporting this ability was awarded a 2009 Cozzarelli Prize by the National Academy of Sciences.

MRFM involves attaching the sample to the end of a tiny silicon cantilever. As a magnetic iron cobalt tip nears the sample, the atoms' nuclear spins become attracted to it and generate a small force on the cantilever. Spins are repeatedly flipped, causing the cantilever to gently sway. Displacement is measured with a laser beam to create a series of 2D images, then combined to generate a 3D image. MRFM resolution is nearly as good (within a factor of 10) as that of electron microscopy. But electron microscopy damages delicate samples.

Degen and two of his students are pursuing another new approach to nanoscale MRI that uses fluorescence instead of magnetism, replacing the magnetic tip with a diamond that has a nitrogen-vacancy defect in its crystal structure. The diamond functions as a sensor because its fluorescence intensity is altered by interactions with magnetic spins.

  1. C.L. Degen et al., PNAS 106(5), 1313–1317, Feb. 3, 2009.

More Brand Name Current Issue Articles
More Brand Name Archives Issue Articles

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!