Laser-induced nanobubbles kill cancer cells

March 1, 2010
When short laser pulses strike gold nanoparticles, nanobubbles form—and Rice University (Houston, TX) scientists have found that they can tune the lasers to create either small, bright bubbles that are visible but harmless, or large bubbles that burst cells.

When short laser pulses strike gold nanoparticles, nanobubbles form—and Rice University (Houston, TX) scientists have found that they can tune the lasers to create either small, bright bubbles that are visible but harmless, or large bubbles that burst cells.

In laboratory studies published last year, Rice physicist Dmitri Lapotko and colleagues at the Laboratory for Laser Cytotechnologies at the A.V. Lykov Heat and Mass Transfer Institute (Minsk, Belarus), used them to blast through arterial plaque. "The bubbles work like a jackhammer," Lapotko said.

Now, Lapotko and Rice professor Jason Hafner have tested the bubbles on leukemia cells and cells from head and neck cancers. They attached antibodies to the nanoparticles in order to target only cancer cells, and found the technique was effective at locating and killing them. The work is described in the February 26, 2010 issue of Nanotechnology.

The technology could be used for "theranostics," a single process that combines diagnosis and therapy. In addition, because the nanobubbles show up on microscopes in real time, the technique can be use for post-therapeutic assessment.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!