Crossed waveguides couple at one wavelength

May 21, 2001
Vertical couplers can serve as optical add/drop multiplexers. Their parallel geometry has two disadvantages, however: uniform coupling produces high -9-dB sidelobes, and direct coupling to optical fibers is impossible. Scientists at the University of California (Santa Barbara and Santa Cruz, CA) have developed an alternate geometry that solves both these problems.

Vertical couplers can serve as optical add/drop multiplexers. Consisting of two stacked proximal waveguides, they are simple in construction and can potentially be monolithically integrated with lasers, amplifiers, and photodetectors. Their parallel geometry has two disadvantages, however: uniform coupling produces high -9-dB sidelobes, and direct coupling to optical fibers is impossible. Scientists at the University of California (Santa Barbara and Santa Cruz, CA) have developed an alternate geometry that solves both these problems.

The device contains two vertically stacked waveguides that form an X with a crossing angle of 0.1° to 0.25° (see figure). It is constructed by fabricating each waveguide on a separate wafer, bonding the wafer faces together, and etching away one wafer substrate. Although both waveguides are of indium gallium arsenide phosphide, they have differing dimensions and quaternary compositions. The lower waveguide is 0.21 µm thick and has a bandgap at 1.4 µm, while the upper waveguide is 1 µm thick with a bandgap at 1.1 µm. Their propagation constants match at a particular wavelength, causing strong coupling only at that wavelength.

The crossed geometry naturally causes gradual coupling, reducing the sidelobe level to -26 dB. Coupling efficiency reaches 97% at a central wavelength of 1.56 µm and a 3-dB bandwidth of 6 nm. The divergence of the two waveguides allows fibers to be directly coupled to them. The device is polarization-dependent, with a 60-nm wavelength peak shift between orthogonal modes; coupling efficiency is strongly dependent on crossing angle. For more details, contact Bin Lin at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!