Ultrafast laser has order-of-magnitude power increase

Feb. 22, 2005
February 22, 2005, Dexter, MI--A femtosecond fiber-oscillator/fiber-amplifier system introduced by Clark-MXR produces up to 20 W average power; this is more than an order of magnitude higher than has traditionally been available in a one-box ultrashort-pulse laser design. Direct-write waveguides and high-signal-to-noise pump/probes are two of many potential applications.

February 22, 2005, Dexter, MI--A femtosecond fiber-oscillator/fiber-amplifier system introduced by Clark-MXR produces up to 20 W average power; this is more than an order of magnitude higher than has traditionally been available in a one-box ultrashort-pulse laser design. Direct-write waveguides and high-signal-to-noise pump/probes are two of many potential applications.

Called the Impulse, the laser is an all-diode and direct-diode-pumped ytterbium (Yb)-doped fiber-oscillator/amplifier system capable of producing variable pulse energies up to 10 microjoules at repetition rates between single-shot and 2 MHz (up to 20 W average power output at 2 MHz). The repetition rate is further adjustable up to 25 MHz at a constant 20-W average power output (that is, reduced pulse energy above 2 MHz). This average-power capacity for the Impulse laser is based on a novel (patent-pending) concept in mode-locked oscillator/amplifier technology. The use of a Yb-doped fiber-oscillator/fiber-amplifier design combines the low-noise performance associated with solid-state operation with the high-spatial-mode quality of fiber lasers. The laser is a compact, robust source of femtosecond pulses that has the ease of operation, stability, and reliability of a fiber source. Options include multiphoton-photopolymerization and waveguide-writing workstations, harmonic generators, and OPA/NOPA wavelength converters for high-signal-to-noise, rapid data acquisition in pump/probe experiments.

Its performance parameters include a repetition rate that is user-variable from single-shot to 25 MHz, a pulse energy that is user-variable between 1 nanojoule and 10 microjoules (greater than 0.8 microjoule at 25 MHz, greater than 10 microjoule at less than 2 MHz), and an average power output of greater than 20 W at a greater-than-or-equal-to 2-MHz repetition rate. It's pulse width is less than 250 fs; its transverse mode is TEM00 with a beam quality M2 of better than 1.2. The center wavelength is 1.03 microns and the laser requires 110 VAC, 20 amps.

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!