QKD experiment uses entangled photon pairs

June 1, 2007
Although entangled-photon pairs have been generated in the 1550 nm telecommunications band within optical fiber for research into secure quantum-key distribution (QKD), previous experiments have only estimated the quantum bit-error rate (QBER) and sifted-key generation rate from prestage results.

Although entangled-photon pairs have been generated in the 1550 nm telecommunications band within optical fiber for research into secure quantum-key distribution (QKD), previous experiments have only estimated the quantum bit-error rate (QBER) and sifted-key generation rate from prestage results. But now, sifted keys-defined as keys created after reconciliation of the measurement basis-have been generated for the first time in an entanglement-based differential-phase QKD experiment by researchers at NTT (Atsugi, Japan) and Osaka University (Osaka, Japan).

Light from an external-cavity semiconductor laser at 1551.11 nm is converted into a pulse stream by a lithium niobate modulator followed by an erbium-doped fiber amplifier and launched into a cooled 500 m length of dispersion-shifted fiber with 1551 nm zero-dispersion wavelength. Spontaneous four-wave mixing produces a series of time-correlated entangled-photon pairs that are then actively phase-modulated by a lithium niobate modulator followed by a planar-lightwave-circuit Mach-Zehnder interferometer. Sifted keys with a length of 133 bits were generated, and the QBER was measured at 8.3% with a key generation rate of 0.3 bit/s, good enough to be distilled to a secure key through error correction and privacy amplification. Contact Toshimori Honjo at [email protected].

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!