Fiberoptic probe detects eye diseases

March 1, 1997
A diagnostic probe for detecting early symptoms of cataracts and other eye diseases has been developed by Rafat Ansari, project scientist at NASA`s Lewis Research Center (Cleveland, OH).

A diagnostic probe for detecting early symptoms of cataracts and other eye diseases has been developed by Rafat Ansari, project scientist at NASA`s Lewis Research Center (Cleveland, OH). Ansari and postdoctoral student Kwang Suh designed a single-angle fiberoptic device that both characterizes crystalline agglomeration in the lens of the eye and creates a three-dimensional (3-D) map of the lens. The probe was originally developed for studying the growth phenomena of protein crystals in space, Ansari says.

Probe design

The probe is based on quasi-elastic light scattering (or dynamic light scattering), which is routinely used for studying submicron particle dispersions and typically requires a laboratory-sized room for all the equipment used in such measurements. Dynamic light scattering involves suspending particles in a fluid medium. A laser beam interacts with the Brownian motion of the particles causing them to react in a Doppler broadening motion. The scattering intensity fluctuates in time. From these fluctuations, a time-autocorrelation function is constructed, from which the diffusion coefficient of the scattering particles is determined. The particle size and size distribution is then calculated from this diffusion data if the viscosity, the refractive index of the host fluid, and temperature of the experiment is known.

Using fiberoptic cable and advances in optoelectronic devices such as miniaturized lasers and photodetectors, Ansari and Suh designed a single-angle single-mode fiberoptic device with a diameter less than 1 cm and a length less than 1.3 cm. A fiberoptic receiver collects the scattered light and carries it to a photodetector, which amplifies the signal and transforms it into electronic signals. These are sent to a laptop computer programmed to compute the particle size from the data.

Transferring knowledge

When his father contracted cataracts, Ansari and associates experimented with using the probe to analyze this problem as well. The eye is 65% water and 35% protein, which is the highest concentration of protein in the human body. The lens is also the only component in the body in which protein is so well arranged and is transparent.

When cataracts form, there is no medical treatment, except for surgical removal of the lens. More than 1.4 million Americans undergo this procedure annually, and 50 million people develop cataracts worldwide.

The light-scattering probe characterizes particles from one nanometer to a few microns in size. The probe also has the capacity to visualize macro particles (a few microns to a few millimeters) via a miniature microscope built into the device.

The lens of the human eye is the size of an aspirin tablet. The probe can detect tiny clusters or clumps of protein crystallines before they form into an obstruction, allowing time for pretreatment of the condition. When analyzing the eye, a laser emitting at 670 nm was used. A relatively low output power (50 µW) ensured no harm came to the eye. Each measurement was taken between 5 and 10 seconds.

"We can also do a 3-D analysis with the same probe creating a `mammogram` of the lens, or what I call a cataract-o-gram," says Ansari. NASA is collaborating with the National Institutes of Health, through the National Eye Institute (both Bethesda, MD), on further experiments testing the probe with other diseases of the eye as well as with diabetes-related problems.

About the Author

Laurie Ann Peach | Assistant Editor, Technology

Laurie Ann Peach was Assistant Editor, Technology at Laser Focus World.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!