BTS256-UV Spectroradiometer for IEC 61215 series preconditioning tests of PV modules

June 10, 2022

The qualification of PV modules according to IEC 61215 series requires preconditioning with defined doses of UVA and UVB radiation. Unlike conventional radiometers, the new BTS256-UV spectroradiometer enables the most accurate measurement of UVA and UVB irradiance levels irrespective of the type of UV source used. Each device is supplied with a traceable calibration certificate and is designed to operate at the required high temperature.

The BTS256-UV measures the spectral irradiance produced by UV preconditioning systems over the spectral range 280 nm to 400 nm. This enables the most accurate determination of the absolute proportions of UVA and UVB radiation. Incorporation within automated systems is made possible via the RS-485 serial interface with the software Read-out Kit, S-SRK-BTS256. This enables control of the UV radiation system and ensures an appropriate dose of UVB radiation within a total UV prescribed dose of 15 kWh/m2. The full measurement data are available via the user application software or the Read-out Kit.

The BTS256-UV spectroradiometer is built into a stainless steel housing that has excellent UV stability and low thermal conductivity providing reliable operation at the obligatory temperature of 60°C±5°C. Its thin construction and integrated cosine diffuser ensure correct measurement of irradiance in the required plane.

The calibration laboratory at Gigahertz-Optik offers factory calibrations for the BTS256-UV with the highest level of traceability. They are subject to the same quality management as used in Gigahertz-Optik’s DAkkS-accredited calibration and testing laboratory. ISO 17025 accredited test certificates of calibration for the BTS256-UV are optionally available.

The BTS256-UV spectroradiometer covers the spectral range 200 nm to 520nm and is therefore suitable for other high intensity UV applications including UV curing, solar simulation, UV weathering systems, and germicidal UV radiation.


Sponsored Recommendations

Manufacturing thin films with tailor-made electronic properties

Dec. 5, 2023
Unlock the future of optoelectronics as researchers at Leibniz IPHT in Jena, Germany unveil an innovative technique for precision deposition of thin organic semiconductor films...

Quantitative Microscopy with Deep Learning

Dec. 5, 2023
Explore the untapped potential of deep learning in video microscopy with our cutting-edge software, DeepTrack 2.2. Overcoming the steep learning curve, this innovative application...

Stimulated Brillouin scattering enhances CMOS chip for microwave signal processing

Dec. 5, 2023
University of Sydney Nano Institute researchers are pioneering photonic silicon chips and helping spur growth in Australia’s semiconductor industry.

Current Trends in Laser Absorption Spectroscopy: More than Just Beer's Law

Dec. 5, 2023
Dive into the cutting-edge world of absorption spectroscopy in our upcoming webinar, exploring groundbreaking techniques such as cavity ringdown spectroscopy, photoacoustic spectroscopy...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!